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Abstract
We develop the general quantum stochastic approach for the description of
quantum measurements continuous in time. The framework that we introduce
encompasses the various particular models for continuous-time measurements
considered previously in the physical and the mathematical literature.
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1. Introduction

In recent years, the problem of describing the behaviour of a quantum system continuously
observed in time has been the subject of intensive investigations in the physical and the
mathematical literature. This type of behaviour is generally not reversible in time and hence,
in particular, cannot be described by the Schrödinger equation whose solutions are reversible.
The present strong interest in this fundamental problem is to a large extent caused by the rapid
development of experimental techniques, where experiments involving continuous-time (i.e.
continuous in time) ‘monitoring’ of a quantum system have become possible [19–21, 31, 41].

The present paper develops, in the context of continuous-time monitoring, the general
approach for the description of quantum measurements, formulated in [36, 37]. The general
framework that we introduce encompasses the various particular models for continuous-time
measurements, considered previously in the physical and mathematical literature.

This concerns:

• The Markovian models in the mathematical physics literature [1–10, 27, 30], formulated
either in terms of stochastic differential equations or in terms of semigroups of probability
operators or in terms of the instrumental processes with independent increments. In fact,
the stochastic equations used in all of these models generalize the quantum filtering
equation which was derived in the quantum stochastic calculus modelling framework.
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This modelling framework satisfies the principles of nondemolition observation ([7–10]
and references therein). It was, however, shown in [35] that the case of continuous-time
indirect nondemolition measurement can be considered in the more general quantum
theory setting, which is not based on the use of the essentially Markovian measurement
model of quantum stochastic calculus.

• The models of continuous-time observation in the physical literature [11, 13, 14, 17,
22–25, 34, 38, 39, 44, 47–51], including those in quantum optics. The derivation
of stochastic equations in all these models is based mostly on unravelling the master
equation of Lindblad type [33] (cf, for example, [39, 50, 51]) or on the phenomenological
introduction of non-Markovian quantum trajectories [47–49].

As a prerequisite for our results in the main part of the paper, we review in section 2 the
main concepts of the operational approach (section 2.1) and the main ideas of the quantum
stochastic approach (QSA) (section 2.2) for the description of quantum measurements.

Sections 3–8 then develop the formalism for the description of continuous-time
measurements from the general viewpoint of the QSA, formulated in [36, 37]. The general
scene is set in section 3. Section 4 introduces the notion of a posterior pure state trajectory and
gives its probabilistic treatment. The special case of Markov evolution is treated in section 5.
Section 6 establishes the notion of a measuring model of continuous-time direct quantum
measurement and sections 7 and 8 address the questions of continuous-time nondemolition
measurement. Finally, section 9 consists of concluding remarks.

2. Basic representations of quantum measurements

This section reviews both the operational approach and the quantum stochastic approach for
the description of quantum measurements.

By a quantum measurement we mean a physical experiment on a quantum system which,
resulting in the observation in the classical world of an outcome that (to some degree)
characterizes the quantum system, may cause a change in the state of the quantum system, but
not the quantum system’s destruction.

We distinguish between direct and indirect quantum measurements. A direct quantum
measurement corresponds to a measurement situation where we have to describe the direct
interaction between the measuring device and the observed quantum system, while in case
of an indirect measurement, a direct measurement is made of some other quantum system,
entangled with the one considered.

The term ‘generalized measurement’, as usual, corresponds to the measurement situation
with outcomes of the most general nature possible under a quantum measurement.

Let a quantum system S, described in terms of a complex separable Hilbert space H,
interact with another system (quantum or classical). The interaction, changing the initial state
ρ0 of S into a certain new state, leaves some imprint in the classical world, the imprint being
described as a point ω in some standard Borel measure space3 (�,F). Denote the Banach
space of all bounded linear operators on H by B(H).

Consider first the most general scheme of the complete statistical description of any
generalized quantum measurement. This kind of description implies the knowledge of the
probability distribution of different outcomes of a measurement and a statistical description
of the state change of the quantum system under this measurement.

3 A standard Borel space is a measurable space that is isomorphic to the real unit interval. In particular, any Polish
space is standard Borel.
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We introduce the following notation:
Let π(B; ρ0) = Prob{ω ∈ B; ρ0} be the probability that the imprint ω in the classical

world belongs to a subset B ∈ F .
Let Ex{Z; ρ0|B} be the conditional expectation of any von Neumann observable

Z = Z∗, Z ∈ B(H), at the instant immediately after the measurement and conditioned
on the outcome ω ∈ B.

The posterior state (or posterior density operator) ρout(B; ρ0), of the quantum system
conditioned by the imprint B in the classical world, is defined indirectly as the solution to

Ex{Z; ρ0|B} = tr{ρout(B; ρ0)Z} (2.1)

(for arbitrary Z and B) and constitutes the statistical description of the state change of the
quantum system under a measurement when only the event that ω belongs to B has been
recorded (cf [42, 43, 2, 36, 37]).

The unconditional posterior state ρout(�; ρ0) of the quantum system corresponds to the
situation where the imprint ω in the classical world is ignored completely.

Any posterior state ρout(B; ρ0) can be described in terms of a family of statistical operators
{ρout(ω; ρ0), ω ∈ �}, defined π-almost everywhere (a.e.) on�, and usually referred to as the
family of posterior states. Specifically, for all B ∈ F with π(B; ρ0) 
= 0,

ρout(B; ρ0) =
∫
B
ρout(ω; ρ0)π(dω; ρ0)

π(B; ρ0)
. (2.2)

For the unconditional posterior state ρout(�; ρ0) the relation (2.2) can be considered as
the usual statistical average over the posterior states ρout(ω; ρ0) with respect to the probability
distribution π(dω; ρ0).

For any type (direct or indirect) of generalized quantum measurement the operational
approach [15, 16, 26, 32, 42, 43, 2, 29] can be used for the most general mathematical
specification of all of the above-mentioned elements of the statistical description of a
measurement.

2.1. The operational description of a generalized quantum measurement

In the frame of the operational approach, the mathematical notion of a quantum instrument
plays a central role.

Specifically, a mapping N (·)[·]: F × B(H) → B(H) is called a quantum instrument if
N (·) is a σ -additive measure on (�,F)with values N (B), B ∈ F , that are normal completely
positive4 bounded linear maps B(H) → B(H) such that the following normalization relation
is valid: N (�)[I ] = I .

In the frame of the operational approach it is assumed that

Ex{Z; ρ0|B} = tr{ρ0N (B)[Z]}
π(B; ρ0)

∀B ∈ F . (2.3)

In case Z = I, from (2.3) it follows that the probability distribution π(B; ρ0) of outcomes
under a measurement is given by

π(B; ρ0) = tr{ρ0N (B)[I ]} ∀B ∈ F . (2.4)

The positive σ -additive operator-valued measure M(B) = N (B)[I ], satisfying the
condition M(�) = I, is called a probability operator-valued measure or a POV measure,
for short.

4 For the definitions of normality and complete positivity see, for instance, [29].
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Due to (2.3), in the frame of the operational approach the posterior state ρout(B; ρ0),
conditioned by the outcome ω ∈ B and defined by the relation (2.1), is representable as

ρout(B; ρ0) = M(B)[ρ0]

π(B; ρ0)
(2.5)

where M(B)[·] denotes the map dual to N (B)[·], which acts on the Banach space T (H) of
trace-class operators on H and is defined by

tr{κN (B)[Y ]} = tr{M(B)[κ]Y } (2.6)

for arbitrary Y ∈ B(H), κ ∈ T (H). Since N (�)[I ] = I , it follows from (2.6) that
tr{M(�)[ρ]} = 1 for any density operator ρ ∈ T (H). We follow the terminology of [29]
and refer to M(·)[·] as a quantum instrument associated with the quantum instrument N (·)[·].
Due to (2.5) we also have

π(B; ρ0) = tr{M(B)[ρ0]} ∀B ∈ F . (2.7)

For any initial state ρ0 of a quantum system, the family of posterior states {ρout(ω, ρ0), ω ∈
�} always exists [42, 43, 2] and is defined uniquely, π-almost everywhere, by the relation:∫

B

tr{ρout(ω; ρ0)Y }π(dω, ρ0) = tr{ρ0N (B)[Y ]} (2.8)

for all Y ∈ B(H),∀B ∈ F . From (2.2) and (2.5) we have, in particular,

ρout(ω; ρ0) = dM(·)[ρ0]

dπ(·; ρ0)
(2.9)

that is, the posterior state ρout(ω; ρ0) is a density of the measure M(·)[ρ0] with respect to
the probability scalar measure π(·; ρ0). Further, from (2.5) it follows that the unconditional
posterior state is given by

ρout(�; ρ0) = M(�)[ρ0]. (2.10)

It was proved in [36] that for any quantum instrument there exist:

• a positive finite scalar measure ν(·) on (�,F);
• a positive integer N0 � ∞;
• a dimension functionN(·), defined ν-almost everywhere on�, with values being positive

integersN(ω) � ∞;
• positive numbers αi, summing up to one

∑N0
i=1 αi = 1;

• a family {Win: i = 1, . . . , N0; n = 1, . . . , l} (with l being equal to ν-sup{N(ω), ω ∈ �})
of bounded linear operators Win: H → L2(�, ν;H), satisfying for ∀f, g ∈ H the
orthonormality relation∫

�

N(ω)∑
n=1

〈(Wjnf )(ω), (Wing)(ω)〉ν(dω) = 〈f, g〉δji (2.11)

such that for ∀B ∈ F,∀Y ∈ B(H) and ∀f, g ∈ H the following integral representation
for a quantum instrument is valid:

〈f,N (B)[Y ]g〉 =
N0∑
i=1

αi

∫
B

N(ω)∑
n=1

〈(Winf )(ω), Y (Wing)(ω)〉ν(dω). (2.12)

The integral representation (2.12) is, in general, different and more detailed than the
representations available in the mathematical and physical literature [28, 45, 51]. The
latter are similar to the Stinespring–Kraus representation for a completely positive map on
B(H) (cf, for example, [29]). The most essential difference is due to the orthonormality
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relation (2.11), which is not present in the Stinespring–Kraus like representations of a
quantum instrument [5, 28, 29, 45, 51]. Moreover, since the two different types of
indices i, n enter the orthonormality relation (2.11) in quite different manners, the double
indexing in (2.12) cannot, in general, be presented as a single one without loss of the
natural structure of an orthonormality relation (see [36] for further discussion).

We would like to emphasize here that having the elements of an integral representation of
an instrument, one can construct (due to the definite transformation rule (see [36])) a plenitude
of other integral representations of the same instrument with different families of operators
{W ′

in} and different scalar measures ν ′, the latter being, however, of the same type: [ν ′] = [ν].
The operational approach,while essential for the formalization of the statistical description

of any generalized quantum measurement, does not, in general, specify a possible random
behaviour of the quantum system under a single measurement. In other words, the operational
approach, in general, does not give the possibility to include into consideration the description
of the stochastic, irreversible in time behaviour of a quantum system under a single
measurement, depending on an outcome ω in the classical world. The description of such
stochastic behaviour of a quantum system means the specification of a probabilistic transition
law governing the change from the initial state of the quantum system to a final one under a
single quantum measurement. We refer to this kind of description of a quantum measurement
as a complete stochastic description.

The operational approach also does not distinguish between direct and indirect
measurements.

In this connection we would like to emphasize that in quantum theory any physically based
problem must be formulated in unitarily equivalent terms and the results of its consideration
must not be dependent either on the choice of a special representation picture (Schrödinger,
Heisenberg or interaction) or on the choice of basis in the Hilbert space. Moreover, generally
the description of any direct quantum measurement cannot simply be reduced to the quantum
theory description of a measuring process, as it is now usually considered in the mathematical
and physical literature. For this kind of measurement situation we cannot specify definitely
either the interaction, or the quantum state of a measuring device environment, or describe
a measuring device in quantum theory terms alone. In fact, under such a scheme, the
description of a direct quantum measurement is simply transferred to the description of a
direct measurement of some observable of an environment of a measuring device.

We recall that for the case of discrete outcomes, the original von Neumann approach
[40] describes specifically a direct quantum measurement and gives both a complete statistical
description and a complete stochastic description of this measurement. Specifically, if the
initial state ρ0 of a quantum system is pure, that is, ρ0 = |ψ0〉〈ψ0|, and if under a single
measurement the outcome λj is observed, then in the frame of the von Neumann approach the
quantum system ‘jumps’ with certainty to the posterior pure state

Pj |ψ0〉〈ψ0|Pj
‖Pjψ0‖ (2.13)

where Pj is the projection, corresponding to the observed eigenvalue λj of the observable
Z = ∑

j λjPj . The probability µj of the outcome λj is given by

µj = ‖Pjψ0‖2. (2.14)

An approach giving both a complete statistical and a complete stochastic description
of a direct quantum measurement with outcomes of the most general possible nature was
introduced in [36, 37]. This approach is called quantum stochastic and we refer to it as QSA.
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2.2. Quantum stochastic approach

It was shown in [36] that any generalized direct quantum measurement (section 2.1) can be
described in terms of certain scalar measures on a standard Borel space (�,F) and associated
stochastic evolution operators, describing the stochastic evolution of the quantum system in
the Hilbert space H conditioned by the observed outcomeω. We refer to the collection of these
quantities as a quantum stochastic representation, or QSR, of a generalized direct quantum
measurement. For simplicity, we consider below only quantum stochastic representations for
which the quantum stochastic evolution operators are bounded.

From the point of view of the operational approach, the QSA specifies, in particular, the
type of quantum instrument, corresponding to the description of a generalized direct quantum
measurement.

In particular, it was shown in [36] that any generalized direct quantum measurement can
be interpreted to correspond to an invariant class of unitarily equivalent measuring processes
(statistical realizations). For an invariant class of measuring processes the elements of the
integral representation (2.12) of the corresponding instrument are the same for all measuring
processes from this class and are given only through the unitary invariants of the measuring
process. The special form of this integral representation of an instrument, corresponding to
the invariant class, is called quantum stochastic.

According to the QSA, for every generalized direct quantum measurement there exists a
unique quantum stochastic representation of a measurement, giving a complete statistical and
stochastic description of this measurement, in a precisely specified sense.

Specifically, by a quantum stochastic representation (QSR), we mean a collection

Q = {{qji(ω)ν(dω)}, {Vi(ω)}, {αi}} (2.15)

consisting of three families of elements where:

• qji(ω)ν(dω), i, j = 1, . . . , N0;N0 � ∞ are complex scalar measures on a standard
Borel space (�,F), absolutely continuous with respect to a finite positive scalar measure
ν(·), with qii(ω) � 0 and satisfying the orthonormality relation∫

�

qji(ω)ν(dω) = δji; (2.16)

• the αi, i = 1, . . . , N0 constitute a finite or countable sequence of positive numbers that
sum to 1;

• each Vi(ω), i = 1, . . . , N0 is a ν-measurable operator-valued function with values being
linear bounded operators on H, satisfying the orthonormality relation∫

�

V ∗
j (ω)Vi(ω)qji(ω)ν(dω) = δij I (2.17)

and such that, for any B ∈ F and any index i,∫
ω∈B
Vi(ω)qii(ω)ν(dω) ∈ B(H). (2.18)

We let

νi(dω) = qii(ω)ν(dω) (2.19)

ν0(dω) =
∑
i

αiνi(dω) (2.20)

and refer to these as the input probability scalar measures.
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In the case the index set for i consists of one element only, we drop the index and assume
that the probability density q11 is identically 1, implying that ν(·) is a probability measure, and
we then say that the QSR is simple.

The ν-measurable operator-valued functionsVi(ω), having the properties (2.17) and (2.18)
are called in [36] quantum stochastic evolution operators.

Consider, in general, the statistical and stochastic description of a quantum measurement,
represented by a QSR.

The quantum instrument, corresponding to a direct quantum measurement, which is
determined by the quantum stochastic representation Q, is given, for all B ∈ F and all
y ∈ B(H), by

N (B)[Y ] =
∑
i

αiNi (B)[Y ] (2.21)

with

Ni (B)[Y ] =
∫
B

V ∗
i (ω)YVi(ω)νi(dω). (2.22)

The probability scalar measure π(dω; ρ0) on �, defined by (2.4), and the family of un-
normalized posterior states ηout(ω; ρ0) on H are presented by the following specifications

π(dω; ρ0) =
∑
i

αi tr{Vi(ω)ρ0V
∗
i (ω)}νi(dω) (2.23)

ηout(ω; ρ0) =
∑
i

αiVi(ω)ρ0V
∗
i (ω)qii (ω). (2.24)

Introducing for every index i = 1, . . . , N0 the un-normalized posterior state

η
(i)
out(ω; ρ0) = Vi(ω)ρ0V

∗
i (ω) (2.25)

we present the un-normalized posterior states (2.24) and the probability scalar measure (2.23)
as

ηout(ω; ρ0) =
∑
i

αiqii (ω)η
(i)
out(ω; ρ0) (2.26)

and

π(dω; ρ0) =
∑
i

αiπi(dω; ρ0) (2.27)

with

πi(dω; ρ0) = tr
{
η
(i)
out(ω; ρ0)

}
νi(dω). (2.28)

The probability scalar measures πi(·; ρ0) and π(·; ρ0) are called output probability measures.
Due to (2.8), (2.26) and (2.28), for the associated instrumentM(·)[·] we have the following

representation

M(B)[ρ0] =
∑
i

αiMi (B)[ρ0] ∀B ∈ F (2.29)

where

Mi(B)[ρ0] =
∫
B

η
(i)
out(ω; ρ0)νi(dω) (2.30)

and, consequently, for any index i the unnormalized posterior state η(i)out(ω; ρ0) can be
considered as the Radon–Nikodym derivative dMi

dνi
of the ith associated instrument Mi with

respect to the input probability measure νi.
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If the recorded result in the classical world is (only) that the outcome ω belongs to a
certain set B ∈ F then the corresponding probability of this and the ensuing knowledge of the
(normalized) posterior state of the quantum system are represented, respectively, as

π(B; ρ0) =
∫
B

π(dω; ρ0) (2.31)

and

ρout(B; ρ0) =
∑
i αi

∫
B
η
(i)
out(ω; ρ0)νi(dω)

π(B; ρ0)
. (2.32)

Due to the decompositions (2.22), (2.26) and (2.27), in the frame of the QSA
Ni(·)[·],Mi(·)[·], η(i)out(ω; ρ0), νi(dω) and πi(·; ρ0) are interpreted to present the instrument,
the associated instrument, the unnormalized posterior state, the input and the output probability
distributions of outcomes in the ith random transition channel of a measurement, respectively.
The statistical weights of the different channels i are given by αi, which are interpretable as
probabilities.

Let the initial state of a quantum system be pure: ρ0 = |ψ0〉〈ψ0|. Due to the
orthonormality relation (2.17) every pure state Vi(ω)ψ0, i = 1, . . . , N0, is interpreted in
the frame of the QSA as a posterior pure state outcome in the Hilbert space H conditioned
by the observed outcome ω and corresponding to the ith random transition channel of the
quantum measurement.

For the observed outcome ω the probability of the posterior pure state outcome Vi(ω)ψ0

in H is given by

θi(ω) = αiqii(ω)‖Vi(ω)ψ0‖2∑
j αj qjj (ω)‖Vj (ω)ψ0‖2

. (2.33)

The representation of the unconditional posterior state as

ρout(�; ρ0) =
∑
i

αi

∫
�

Vi(ω)|ψ0〉〈ψ0|V ∗
i (ω)νi(dω) (2.34)

is considered in the QSA as the usual statistical average over the posterior pure state
outcomes |Vi(ω)ψ0〉〈Vi(ω)ψ0|, i = 1, 2, . . . with respect to the input probability distribution
of outcomes νi(·) in channel i and with respect to the different channels, given with statistical
weights αi, i = 1, 2, . . . .

Physically, the concept of different random channels correponds, under the same outcome
ω, to different underlying random quantum transitions of the environment of a measuring
device, which we cannot, however, specify with certainty.

Direct measurements, on a given quantum system, described by different QSR are
called stochastic representation equivalent provided the QSR give the same statistical and
stochastic description. For example, in the frame of the QSA, the notion of a von
Neumann (projective) measurement of a discrete observable Z = ∑

j λjPj corresponds
to the stochastic representation equivalence class of direct measurements on (R,B(R)), for
which the complete statistical and stochastic description is determined by the von Neumann
measurement postulates [40], presented by the formulae (2.13) and (2.14).

3. Continuous-time direct measurements in the frame of QSA

We would now like to introduce the general QSR describing a continuous, over a time period
(0, T ], direct quantum measurement. In this case the outcome ω, characterizing continuous-
time observation up to the moment 0 < t � T , is given by a record {xτ }τ∈(0,t], presenting
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a trajectory xt0 = {xτ }τ∈(0,t] in a filtered standard Borel space (�, {Ft},F), and without
essential loss of generality we think of xt as real-valued and, for simplicity, we consider the
case where the measure space � is represented by D(0, T ], the space of right continuous
functions with left limits, defined on (0, T ]. In this case, for any time t ∈ (0, T ] the trajectory
xt0 is cadlag (continue a droite, limite a gauche). Further, F tτ denotes the σ -algebra generated
by xtτ = {xs}s∈(τ,t] and we use the notation �tτ for the restriction of D(0, T ] to the interval
(τ, t].

As discussed in section 2, under the QSA for any generalized direct quantum measurement
there exists a unique QSR. Then, in particular, under a continuous-time direct quantum
measurement there must exist a unique QSR, describing this special kind of generalized
direct measurement. The elements of this QSR must have the time-wise properties that we
describe now.

For simplicity, we consider only the case of simple QSRs. Thus, in the frame of the QSA,
for any continuous-time direct quantum measurement, whose QSR is simple, at any moment
of time t ∈ (0, T ] there exist:

• A unique input probability scalar measure νt0(·) on �t0;
• A unique family of measurable (with respect to Ft ) operator-valued functions{
V t0

(
xt0): x

t
0 ∈ �t0

}
, defined νt0-almost everywhere on �t0, with values being bounded

linear operators on H such that for any Bt0 ∈ Ft∫
Bt0

V t0
(
xt0

)
νt0

(
dxt0

) ∈ B(H) (3.1)

and the following normalization relation is valid:∫
�t0

(
V t0

(
xt0

))∗
V t0

(
xt0

)
νt0

(
dxt0

) = I. (3.2)

From (2.22) it follows that for any continuous-time direct quantum measurement with a
simple QSR at any moment of time t the instrument N t

0(·)[·] must be represented as

N t
0

(
Bt0

)
[Y ] =

∫
Bt0

(
V t0

(
xt0

))∗
YV t0

(
xt0

)
νt0

(
dxt0

)
(3.3)

for ∀Bt0 ∈ Ft ,∀Y ∈ B(H), with similar time-wise notation for the associated instrument
Mt

0(·)[·], the POV measureMt
0(·), the output laws πt0(·; ρ0) and the family of unnormalized

posterior states
{
ηtout

(
xt0; ρ0

)
: xt0 ∈ �t0

}
, defined νt0,-a.e. on �t0.

Furthermore, we must include in the specification of the QSR, describing the continuous-
time direct measurement, the conditions that:

• At all moments of time until T the input probability scalar measures (describing physically
the measurement situation under which the quantum system is not entangled with a
measuring device) must be compatible in time;

• The output laws πt0(·; ρ0) should also be compatible in time, corresponding to the
compatibility in time of the POV measuresMt

0(·);
• We assume that for any initial pure state ψ0 ∈ H under the continuous-time observation

the posterior pure state outcome, being a trajectory in the Hilbert space H, presented at
any moment t by the quantum stochastic evolution operator as V t0

(
xt0

)
ψ0, is continuous

in t from the right in the norm on H, ν0
t-a.e. on �t0, with the limit of V t0

(
xt0

)
ψ0 as t ↓ 0

being equal to ψ0. Under this specification, the situations where the quantum system is
isolated are included in our representation as a special case. In this case, for any t the
quantum stochastic operatorV t0 does not depend on the event xt0 in the classical world and
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is given by a unitary operator U(t, 0), strongly continuous in t for any 0 < t � T both
from the left and the right.

Summing up all the above-mentioned points, we introduce the following time-wise
specification for the elements of the simple QSR, describing a continuous-time direct quantum
measurement:

• A unique collection
{
νtτ (·): 0 � τ < t � T

}
of input probability scalar measures such

that every νtτ on �tτ is the restriction of the input probability scalar measure ν on �T0 :

νtτ
(
Btτ

) = ν (
�τ0 × Btτ ×�Tt

)
(3.4)

• A unique family
{
V t0

(
xt0

)
: xt0 ∈ �t0, 0 < t � T

}
of measurable (with respect to Ft )

operator-valued functions V t0 (·): �t0 → B(H), defined νt0-almost everywhere on�t0, such
that, for any 0 < t � T and any Bt0 ∈ Ft ,∫

Bt0

V t0
(
xt0

)
νt0

(
dxt0

) ∈ B(H). (3.5)

These operator-valued functions satisfy the normalization relation∫
�t0

(
V t0

(
xt0

))∗
V t0

(
xt0

)
νt0

(
dxt0

) = I (3.6)

and the initial condition

lim
t↓0

∥∥V t0 (
xt0

)
ψ − ψ∥∥

H = 0 ∀ψ ∈ H (3.7)

νt0-a.e. on �t0;
• A unique family

{
V tτ

(
xt0

)
: xt0 ∈ �t0, 0 < τ � t � T

}
of measurable (with respect to Ft )

operator-valued functions V tτ
(
xt0

)
: �t0 → B(H), defined νt0-almost everywhere on �t0,

and such that for any 0 < τ < t � T and any Btτ ∈ F tτ , xτ0 ∈ �τ0∫
Btτ

V tτ
(
xt0

)
νtτ

(
dxtτ

∣∣xτ0 ) ∈ B(H) (3.8)

and the following normalization relation is valid5

∫
�tτ

(
V tτ

(
xt0

))∗
V tτ

(
xt0

)
νtτ

(
dxtτ

∣∣ xτ0 ) = I. (3.9)

These operator-valued functions are associated with the family of operators
{
V t0

(
xt0

)}
via

the cocycle condition

V tτ
(
xt0

) = V ts
(
xt0

)
V sτ

(
xs0

)
(3.10)

valid for any t ∈ (0, T ], τ ∈ [0, T ], s ∈ (0, T ], τ � s � t , νt0-a.e. on �t0 and where
V tτ

(
xt0

)∣∣
t=τ = I . Furthermore,

lim
t↓τ

∥∥V tτ (
xt0

)
ψ − ψ∥∥

H = 0 ∀ψ ∈ H. (3.11)

5 In (3.8) and (3.9) νtτ
(
dxtτ |xτ0

)
denotes the conditional probability measure on

(
�tτ ,F tτ

)
.
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We show later that the cocycle relation (3.10), together with the normalization
relation (3.9), ensures the compatibility of the time dependent POV measures.

For the introduced time-dependent QSR we have the following collections of time
dependent quantum instruments{
N t

0(·)[·]: 0 < t � T
}

(3.12)

N t
0

(
Bt0

)
[Y ] =

∫
Bt0

(
V t0

(
xt0

))∗
YV t0

(
xt0

)
νt0

(
dxt0

) ∀Bt0 ∈ Ft ∀Y ∈ B(H) (3.13)

and{
Mt

0(·)[·]): 0 < t � T
}

(3.14)

Mt
0

(
Bt0

)
[κ] =

∫
Bt0

V t0
(
xt0

)
κ

(
V t0

(
xt0

))∗
νt0

(
dxt0

) ∀Bt0 ∈ Ft ∀κ ∈ T (H). (3.15)

The corresponding collection of time-dependent POV measures and the family of time-
dependent un-normalized posterior states are presented as{

Mt
0(·): 0 < t � T

}
(3.16)

Mt
0

(
Bt0

) =
∫
Bt0

(
V t0

(
xt0

))∗
V t0

(
xt0

)
νt0

(
dxt0

) ∀Bt0 ∈ Ft (3.17)

and {
ηtout(·; ρ0): 0 < t � T

}
(3.18)

ηtout

(
xt0; ρ0

) = V t0
(
xt0

)
ρ0

(
V t0

(
xt0

))∗ ∀xt0 ∈ ⊗t0 (3.19)

respectively.
The collection of time-dependent output laws has the form{

πt0(·; ρ0): 0 < t � T
}

(3.20)

with

πt0
(
Bt0; ρ0

) =
∫
Bt0

tr
{
V t0

(
xt0

)
ρ0

(
V t0

(
xt0

))∗}
νt0

(
dxt0

) ∀Bt0 ∈ Ft . (3.21)

At any moment of time t and for any Bt0 ∈ Ft the normalized posterior states are given by

ρt
(
Bt0; ρ0

) =
∫
Bt0
ηtout

(
xt0; ρ0

)
νt0

(
dxt0

)
πt0

(
Bt0; ρ0

) = Mt
0

(
Bt0

)
[ρ0]

πt0
(
Bt0; ρ0

) . (3.22)

In the following we shall also use the notation for the unconditional posterior state

ρt(ρ0) ≡ ρt(�t0; ρ0
) = Mt

0

(
�t0

)
[ρ0] (3.23)

satisfying the initial condition ρt (ρ0)→ ρ0 as t ↓ 0 in the trace norm on T (H).
Due to the relations (3.4), (3.9) and (3.10), for any t > τ we have the martingale property∫

�tτ

(
V t0

(
xt0

))∗
V t0

(
xt0

)
νt0

(
dxtτ

∣∣xτ0 ) = (
V τ0

(
xτ0

))∗
V τ0

(
xτ0

)
(3.24)

from which it follows that the collection (3.16) of time-dependent POV measures is compatible
in time, that is, for any Bτ0 ∈ Fτ we have

Mt
0

(
Bτ0

) =
∫
Bτ0

(
V t0

(
xt0

))∗
V t0

(
xt0

)
νt0

(
dxt0

)
= Mτ

0

(
Bτ0

)
. (3.25)
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For any 0 < τ < t and any Y ∈ B(H), for the instruments from the collections (3.12) and
(3.14) we have the following properties:

N t
0

(
dxt0

)
[Y ] = N τ

0

(
dxτ0

) [
N t
τ

(
dxtτ

∣∣xτ0 )
[Y ]

]
(3.26)

Mt
0

(
dxt0

)
[κ] = Mt

τ

(
dxtτ

∣∣xτ0 ) [
Mτ

0

(
dxτ0

)
[κ]

]
(3.27)

where we have introduced the notation

N t
τ

(
dxtτ

∣∣xτ0 )
[Y ] = (

V tτ
(
xt0

))∗
YV tτ

(
xt0

)
νtv

(
dxtτ

∣∣xτ0 ) ∀Y ∈ B(H) (3.28)

Mt
τ

(
dxtτ

∣∣xτ0 )
[κ] = V tτ

(
xτ0

)
κ

(
V tτ

(
xt0

))∗
νtτ

(
dxtτ

∣∣xτ0 ) ∀κ ∈ T (H) (3.29)

for instruments N t
τ

( · ∣∣xτ0 )
[·] and Mt

τ

( · ∣∣xτ0 )
[·], which we call conditional.

Due to the properties (3.4)–(3.11) the collection
{
Mt

0

(
�t0

)
[·]: 0 < t � T

}
with

Mt
0

(
�t0

)
[κ] =

∫
�t0

V t0
(
xt0

)
κ

(
V t0

(
xt0

))∗
νt0

(
dxt0

) ∀κ ∈ T (H) (3.30)

and the collection
{
Mt
τ

(
�tτ

∣∣xτ0 )
[·]: 0 < τ < t � T

}
with

Mt
τ

(
�tτ

∣∣xτ0 )
[κ] =

∫
�ts

V tτ
(
xt0

)
κ

(
V tτ

(
xt0

))∗
νtτ

(
dxtτ

∣∣xτ0 ) ∀κ ∈ T (H) (3.31)

constitute families of time-dependent dynamical maps (cf, for example, [29]). We shall call
the dynamical map, which we introduce by (3.31), conditional.

It follows also from (3.4)–(3.11) that for any 0 < τ < t � T the time-dependent
dynamical maps Mt

0

(
�t0

)
[·], Mt

τ

(
�tτ

∣∣xτ0 )
[·] are strongly continuous in t from the right with

the following limits:

lim
t↓0

∥∥Mt
0

(
�t0

)
[κ] − κ∥∥T (H) = 0 (3.32)

lim
t↓τ

∥∥Mt
τ

(
�tτ

∣∣xτ0 )
[κ] − κ∥∥T (H) = 0 (3.33)

∀k ∈ T (H),∀xτ0 ∈ �τ0.

4. Posterior pure state trajectories in a Hilbert space

Together with an arbitrary pure initial state ψ0, any given collection of quantum stochastic
evolution operators

{
V t0 (·): 0 < t � T

}
, with the properties specified in section 3, determines

by

φ
(
t
∣∣xt0) = V t0

(
xt0

)
ψ0 (4.1)

a posterior pure state trajectory
{
φ
(
τ
∣∣xτ0 )}

τ∈(0,T ] in the Hilbert space ⊗τ∈(0,T ]H conditioned

by the continuously observed trajectory x0
T in the classical world.

Due to the specification of the time-dependent QSR, presented in (3.4)–(3.11), this
trajectory is continuous in t from the right for ∀t ∈ (0, T ]

lim
t↓τ

∥∥φ (
t
∣∣xt0) − φ (

τ
∣∣xτ0 )∥∥

H = 0. (4.2)

Furthermore, φ
(
t
∣∣xt0) satisfies the limit condition

lim
t↓0
φ

(
t
∣∣xt0) = ψ0 (4.3)

and, for any 0 < t � T , the following normalization relation holds∫
�t0

∥∥φ (
t
∣∣xt0)∥∥2

ν
(
dxt0

) = 1. (4.4)
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According to QSA,
{
φ
(
τ
∣∣xτ0 )}

τ∈(0,t] presents a posterior pure state outcome under the
continuous-time measurement, which depends on the observed trajectory x0

t in the classical
world.

Thus, for the case of measurement continuous in time until the moment t,both the observed
outcome xt0 in the classical world and the posterior pure state outcome

{
φ
(
τ
∣∣xτ0 )}

τ∈(0,t] in the
Hilbert space ⊗τ∈(0,t]H are represented as trajectories.

Introduce also for any ψ ∈ H and any s � t the notation

1
(
t, s; xt0, ψ

) = V ts
(
xt0

)
ψ. (4.5)

Then from (3.9) it follows that for any ψ ∈ H∫
�ts

∥∥1 (
t, s; xt0, ψ

)∥∥2
ν

(
dxts

∣∣xs0) = ‖ψ‖2 (4.6)

and, due to the property (3.10), we have the following relation

1
(
t; s; xt0,1

(
s, τ ; xs0, ψ

)) = 1 (
t, τ ; xt0, ψ

)
(4.7)

valid ν-a.e. on � for any t ∈ (0, T ], τ ∈ [0, T ], s ∈ (0, T ], τ � s � t . In particular, since
φ
(
s
∣∣xs0) ≡ 1(

s, 0; xs0, ψ0
)

we can also write

1
(
t; s; xt0, φ

(
s
∣∣xs0)) = φ (

t
∣∣xt0). (4.8)

If the initial state ρ0 of a quantum system is pure, that is ρ0 = |ψ0〉〈ψ0|, then under the
continuous-time direct measurement, described by the simple QSR, specified in section 3, at
any moment t ∈ (0, T ] the probability (3.21) of the observed record xt0 = {xτ }τ∈(0,T ] to belong
to a subset Bt0 ⊆ �t0 is given by

πt0
(
Bt0; ρ0

) =
∫
Bt0

∥∥φ (
t
∣∣xt0)∥∥2

νt0
(
dxt0

)
(4.9)

and, due to (4.6) and (4.8), the collection
{
πt0(·; ρ0): t ∈ (0, T ]

}
of output laws is compatible

in time.
The conditional posterior state (3.21) and the unconditional posterior state (3.23) are

represented as

ρt
(
Bt0; ρ0

) =
∫
Bt0

∣∣φ (
t
∣∣xt0)〉 〈φ (

t
∣∣xt0)∣∣νt0 (

dxt0
)

πt0
(
Bt0; ρ0

) (4.10)

and

ρt(ρ0) =
∫
�t0

∣∣φ (
t
∣∣xt0)〉 〈φ (

t
∣∣xt0)∣∣νt0 (

dxt0
)

(4.11)

and, thus, correspond, respectively, to conditional and unconditional statistical averaging
over the posterior pure state outcomes

∣∣φ(t∣∣xt0)〉 〈φ(t∣∣xt0)∣∣ with respect to the input probability
distribution νt0(·).

5. The case of Markov evolution

Consider now the special case of continuous-time measurement under which the quantum
stochastic evolution operators V tτ

(
xt0

)
satisfy the following restriction

V tτ
(
xt0

) = V tτ
(
xtτ

)
for all 0 � τ < t (5.1)
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and  the input probability scalar measure ν(·) satisfies the relation

ν
(
dxτ2τ1 × dxt2t1

) = ν (
dxτ2τ1

)
ν

(
dxt2t1

)
(5.2)

for any 0 � τ1 < τ2 � t1 < t2 � T .
In this special case, the conditional instruments (3.29) and (3.30) become unconditional

in the sense that they do not depend on outcomes of measurements in the past:

N t
s

(
dxts

∣∣xs0) [·] = N t
s

(
dxts

)
[·] (5.3)

Mt
s

(
dxts

∣∣xs0) [·] = Mt
s

(
dxts

)
[·] (5.4)

and for any 0 < s < t � T we have

N t
0

(
Bs0 × Bts

) = N s
0

(
Bs0

) ◦ N t
s

(
Bts

)
(5.5)

Mt
0

(
Bs0 × Bts

) = Mt
s

(
Bts

) ◦ Ms
0

(
Bs0

)
. (5.6)

Thus, under the restrictions (5.1) and (5.2), the time-dependent collections of quantum
instruments (3.12) and (3.14), with the properties (3.27) and (3.28), constitute the so-called
instrumental processes with independent increments [4–6, 29, 30]. Notice that in the general
QSA framework, considered in sections 3 and 4, the families of instruments do not generally
satisfy the relations (5.5) and (5.6), which are, however, usually assumed to be valid for
the description of continuous-time measurements in the frame of the operational approach
(cf [30]).

The collection
{
Mt
τ

(
�tτ

)
[·]: 0 � τ < t � T

}
where

Mt
τ

(
�tτ

)
[·] =

∫
�tτ

V tτ
(
xtτ

)
[·] (
V tτ

(
xtτ

))∗
νtτ

(
dxtτ

)
(5.7)

constitutes a family of time-dependent dynamical maps which, in contrast to (3.31), does not
depend on outcomes in the past.

Under the restrictions (5.1) and (5.2) the unconditional posterior state ρt (ρ0), given by
(3.23), has the following Markov property

ρt(ρ0) = Mt
s

(
�ts

) [
ρs(ρ0)

] ∀0 � s < t (5.8)

In (5.8), we denote ρ0(ρ0) := lims↓0 ρ
s(ρ0) = ρ0 where the limit is in trace norm on T (H).

However, in contrast to the usual presentation of Markovian evolution of an open system
(cf [29] and references cited therein) under the restrictions (5.1) and (5.2), the family of
dynamical maps (5.7) does not, in general, represent a quantum dynamical semigroup.

Example. In recent years, the different stochastic calculus models of continuous-time quantum
measurement, based on the introduction of linear (as well as nonlinear) stochastic differential
equations for a process {ψt , t ∈ [0,∞)} with values in a complex separable Hilbert space H,
were intensively discussed in the mathematical and physical literature.

As we have already mentioned in the introduction, the type of stochastic equation used in
all these presentations corresponds to the quantum filtering equation derived in [7–10], for the
quantum stochastic calculus model of continuous-time indirect nondemolition measurements.

In the physical literature, in fact, only particular cases of such equations were considered.
In the most general settings, the mathematical properties of this kind of stochastic model on a
filtered probability space (�, {Ft}, F, P ) were analysed in [2, 4–6, 27, 29, 30].

For the type of stochastic model in question it is postulated [6] that

• the (un-normalized) posterior state vector ψt ∈ H of the quantum system under
continuous-time observation satisfies a stochastic differential equation of Ito’s type
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dψt = −Ktψt− dt +
∑
Lktψt− dWkt +

∫
Y
(Jtψt−)(y)6̃(dy, dt) (5.9)

with a nonrandom initial condition ψ0 = u ∈ H;
• the Rd -valued observed output process is defined to be

Xi(t) :=
∫ t

0
ci(s) ds +

∞∑
k=1

∫ t

0
aik(s) dWks +

∫
Y×(0,t]

ϕ(g(y; s))gi(y; s)6(dy, ds)

+
∫
Y×(0,t]

gi(y; s)
1 + |gi(y; s)|2 6̃(dy, dt) (5.10)

with the functions

c: (0,∞)→ Rd

aik: (0,∞)→ R

g: Y × (0,∞)→ Rd

ϕ(g): = ‖g‖2

1 + ‖g‖2
;

(5.11)

• i = 1, . . . , d; k = 1, 2, . . . .

The following assumptions are supposed to hold [6] for the stochastic model, defined by
(5.9)–(5.11):

• For any t ∈ (0,∞) and any k = 1, 2, . . . the operators Kt ∈ B(H), Lkt ∈ B(H),
Jt ∈ B(H, L2(Y, ν(·);H));

• Kt +K∗
t = ∑∞

k=1 L
∗
ktLkt + J ∗

t (I ⊗ γt)Jt with γt being a bounded multiplication operator
on the space L2(Y, ν(·); C);

• TheWkt are independent Brownian motions;
• 6(dy, dt) is an adapted Poisson point process on Y × [0,∞) of intensity γt(y)v(dy) dt

and increments independent of the past;
• 6̃(dy, dt) = 6(dy, dt)− γt(y)v(dy) dt is the compensated Poisson process;
• W = {Wkt } and6(dy, dt) are independent;

Due to these assumptions, under the law P the output process (5.10) is a process with
independent increments. Let E ts , 0 � s � t denote the σ -algebra generated by X(r)− X(s),
r ∈ [s, t]. Under a number of regularity conditions, it was proved in [6] that:

• The Cauchy problem for the equation (5.9), with a nonrandom initial condition ψ0 = u
at time t = 0 has a unique (up to P -equivalence) solution ψt = @t(0;ω; u) and for any
t � 0 the process ‖ψt‖2 is a positive martingale with

EP
{‖ψt‖2} = ‖u‖2. (5.12)

• For any t � s the solution @t(s;ω; ξ(ω)) of the equation (5.9) on the interval (s, t] with
the initial (at time s) random condition ξ(ω),where EP

{‖ξ‖2
}
<∞, satisfies the relation

EP
{‖@t(s; · ; ξ)‖2

} = EP {‖ξ‖2} (5.13)

and P -almost surely

@t(τ ;ω;@τ(s, ω; u)) = @t(s;ω; u) ∀ t � τ � s (5.14)

• For any u ∈ H, A ∈ B(H) and any Bts ∈ E ts the equation〈
u,N t

s

(
Bts

)
[A]u

〉
:= EP

{
1Bts 〈@t(s; · ; u),A@t(s; · ; u)〉} (5.15)

defines a family of instruments
{
N t
s (·)[·]: 0 � s < t

}
with the property (5.5).
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Recalling the results of section 4, we see that the stochastic model of continuous-time
quantum measurement, based on the introduction of the stochastic differential equation of type
(5.9), corresponds to a special case of our presentation, where for any ω ∈ �ts the quantum
stochastic evolution operator is defined by the equation

@t(s;ω;ψ) = V ts (ω)ψ ∀ψ ∈ H. (5.16)

The unconditional posterior state of a quantum system in this stochastic model has the Markov
property (5.8).

6. Measuring model of continuous-time direct quantum measurement

For any moment of time t ∈ (0, T ] let us construct, up to unitary and phase equivalence,
a statistical realization, corresponding to the time-dependent QSR, specified in section 3.
We shall refer to the resulting realization as the measuring model of continuous-time direct
quantum measurement, corresponding to the (simple) QSR.

Let H(ν) ≡ H
(
ν,N;�T0

)
be the direct integral [12], induced by a probability scalar

measure ν(·) and dimension function N
(
xT0

)
equal to identity ν-a.e. on �T0 . For such a

dimension function the direct integral H(ν) is identical to L2
(
�T0 , ν; C

)
.

The relation(
XT0

(
BT0

)
ϕT

)(
xT0

) = χBT0
(
xT0

)
ϕT

(
xT0

)
(6.1)

∀BT0 ∈ F, ∀ϕT ∈ H(ν), holding ν-a.e. on �T0 , defines a simple projection-valued measure
XT0 (·): F → B(H(ν)) of the type

[
XT0 (·)

] = [ν(·)] (cf [12, 36]). Here χBT0 denotes the
indicator function of a subset BT0 .

Letting

Xtτ
(
Btτ

) = XT0
(
�τ0 × Btτ ×�Tt

)
(6.2)

the projection-valued measure XT0 (·) defines by(
Xtτ

(
Btτ

)
ϕT

) (
xT0

) = χBtτ
(
xtτ

)
ϕT

(
xT0

) ∀Btτ ∈ F tτ ∀ϕT ∈ H(ν) (6.3)

a collection
{
Xtτ (·): 0 � τ < t � T

}
of time-dependent, mutually commuting and compatible,

projection-valued measures Xtτ (·) on the standard filtered Borel space
(
�T0 , {Ft },F

)
with

values in B(H(ν)), satisfying for any 0 � τ < s < t � T the relation:

Xtτ
(
Bsτ × Bts

) = Xts
(
Bts

)
Xsτ

(
Bsτ

)
(6.4)

∀Bts ∈ F ts ,∀Bsτ ∈ F sτ . In (6.3), xtτ is the restriction of xT0 to the space �tτ . For any t > τ � 0
the type

[
Xtτ (·)

]
is equal to

[
νtτ (·)

]
.

In the case considered, where N
(
xT0

) = 1, ν-a.e. on �T0 , a base of measurability
(cf [12, 36]) consists of only one element eT , defined, up to unitary equivalence, by the
relation

∣∣eT (xT0 )∣∣ = 1, ν-a.e. on �T0 . Since the measure ν(·) is finite, eT ∈ H(ν) and is an
element of maximum type for every projection-valued measureXtτ (·):〈

eT ,X
t
τ (·)eT

〉
H(ν) = νtτ (·). (6.5)

Now, introduce the complex separable Hilbert space K(ν) = H ⊗ H(ν).
Let Uν(t, 0) be a unitary operator on K(ν), strongly continuous in t from the right for

∀t ∈ (0, T ], satisfying the initial condition s-limt↓0 Uν(t, 0) = I (strong limit) and such that
for any vector ψ ∈ H the relation

(Uν(t, 0)(ψ ⊗ eT ))
(
xT0

) = V t0
(
xt0

)
ψ ⊗ eT

(
xT0

)
(6.6)

is valid νT0 -a.e. on �T0 . The unitary operator Uν(t, 0) is defined by the relation (6.6) up
to unitary equivalence. The continuity conditions are required for the compatibility of the
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properties ofUν(t, 0)with the properties of the quantum stochastic evolution operatorsVt0
(
xt0

)
,

specified by (3.5)–(3.11).
The statistical realization{

H(ν), |eT 〉〈eT |,Xt0(·), Uν(t, 0)
}

(6.7)

at any moment of time t ∈ (0, T ], presents onH(ν) the invariant classG(t) (cf [36]) of unitarily
and phase equivalent separable statistical realizations, corresponding to the time-dependent
QSR, specified in section 2.2.

For any t ∈ (0, T ], the representation of the instrument (3.13) through the elements of
the statistical realization (6.7) is given by

N t
0

(
Bt0

)
[Y ] = E|eT 〉〈eT |

[
U∗
ν (t, 0)

(
Y ⊗Xt0

(
Bt0

))
Uν(t, 0)

]
(6.8)

where for any statistical operator σ on H(ν) the notation Eσ [·] denotes the normal completely
positive bounded linear map Eσ [·]: B(K(ν)) → B(H), such that for ∀Q ∈ B(K(ν)) the
relation

tr{ρEσ [Q]} = tr{(ρ ⊗ σ)Q} (6.9)

is valid for any statistical operator ρ on H [42].
The family (3.16) of POV measures is represented by

Mt
0

(
Bt0

) = E|eT 〉〈eT |
[
U∗
ν (t, 0)

(
I ⊗Xt0

(
Bt0

))
Uν(t, 0)

]
. (6.10)

Similar to (6.6), introduce also for any t � τ > 0 the unitary operator Uν(t, τ ), strongly
continuous in t from the right, satisfying the relation Uν(τ, τ ) = I and such that for ∀ψ ∈ H

(Uν(t, τ )(ψ ⊗ eT ))
(
xT0

) = V tτ
(
xt0

)
ψ ⊗ eT

(
xT0

)
(6.11)

ν-a.e. on �T0 . Then we have the following relation for the conditional instrument (3.28):∫
Bt0

N t
τ

(
dxtτ

∣∣xτ0 )
[Y ]ντ0

(
dxτ0

) = E|eT 〉〈eT |
[
U∗
ν (t, τ )(Y ⊗Xt0

(
Bt0

))
Uν(t, τ )

] ∀Y ∈ B(H)

(6.12)

and, consequently, N t
τ

(
dxtτ

∣∣xτ0 )
[·] is the Radon–Nikodym derivative with respect to ντ0 (·) of

the instrument standing on the right-hand side of (6.12).
Due to (3.9), (6.5) and (6.12), for any t � τ � s > 0 we have

νs0(·) = E|eT 〉〈eT |
[
U∗
ν (t, τ )

(
I ⊗Xs0(·)

)
Uν(t, τ )

]
= E|eT 〉〈eT |

[
I ⊗Xs0(·)

]
(6.13)

and, therefore,

E|eT 〉〈eT |
[
U∗
ν (t, τ )

[
I ⊗Xs0(·), Uν(t, τ )

]] = 0 (6.14)

where T � t � τ � s > 0. From (6.14) it follows then that the family{
Uν(t, τ ): t ∈ (0, T ]; τ ∈ [0, T ]; t � τ ;Uν(τ, τ )|τ>0 = I ; s- lim

t↓0
Uν(t, 0) = I

}
(6.15)

of unitary operators, strongly continuous in t from the right, satisfying (6.6) and (6.11), has
the property: [

I ⊗Xs0(·), Uν(t, τ )
]
(ψ ⊗ eT ) = 0 (6.16)

∀ψ ∈ H; ∀t � τ � s > 0.

Let HR be a complex separable Hilbert space isometrically isomorphic to H(ν) by a
unitary transform R, that is HR = RH(ν). The relation P (τ,t]R (·) = RXtτ (·)R−1 defines the
family {

P
(τ,t]
R (·): T � t > τ � 0

}
(6.17)
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of mutually commuting, compatible projection-valued measures P (τ,t]R (·): F tτ → B(HR) of
the type

[
νtτ (·)

]
, satisfying

P
(τ,t]
R

(
Bts × Bsτ

) = P (τ,s]R

(
Bts

)
P
(s,t]
R

(
Bsτ

)
(6.18)

∀Bts ∈ F ts , ∀Bsτ ∈ F sτ ; ∀t > s > τ � 0.
Let{

UR(t, τ ): t ∈ (0, T ]; τ ∈ [0, T ]; t � τ ;UR(τ, τ )|τ>0 = I ; s- lim
t↓0
UR(t, 0) = I

}
(6.19)

be the family of unitary operators on KR = (I ⊗ R)K(ν) = H ⊗ HR, corresponding to
Uν(t, τ ) on K(ν). Then

UR(t, τ ) = (I ⊗ R)Uν(t, τ )(I ⊗ R−1). (6.20)

Denote fR = ReT . From (6.17) and (6.20) it follows that for any ψ ∈ H[
UR(t, τ ), I ⊗ P

(0,s]
R (·)

]
(ψ ⊗ fR) = 0 ∀t � τ � s > 0. (6.21)

Furthermore, for any t > τ � 0 and any ψ ∈ H:(
I ⊗ P (0,t]R

(
dxt0

))
UR(t, τ )(ψ ⊗ fR) = (

V tτ
(
xt0

) ⊗ P (0,t]R

(
dxt0

))
(ψ ⊗ fR) (6.22)

UR(t, τ )(ψ ⊗ fR) =
∫
�t0

(
V tτ

(
xt0

) ⊗ P (0,t]R

(
dxt0

))
(ψ ⊗ fR) (6.23)

〈
fR, P

(τ,t]
R (·)fR

〉
HR

= νtτ (·) (6.24)

where the relation (6.22) should be understood in the infinitesimal sense. For the description
of the most general case of continuous-time nondemolition measurement the relations (6.22)–
(6.24) were first introduced in [35].

From (6.22)–(6.24), we have

E|fR〉〈fR |[UR(t, 0)] =
∫
�t0

V t0
(
xt0

)
νt0

(
dxt0

)
(6.25)

E|fR〉〈fR |
[
(I ⊗ P (0,t]R

(
dxt0

))
UR(t, τ )

] = V tτ
(
xt0

)
νt0

(
dxt0

)
. (6.26)

From (3.10), (6.21) and (6.22) it follows that for any t � s � τ > 0 and ∀ψ ∈ H
the unitary operators UR(t, τ ) (and, hence, also the unitary operators Uν(t, τ )) satisfy the
following relation

UR(t, τ )(ψ ⊗ fR) = UR(t, s)UR(s, τ )(ψ ⊗ fR) (6.27)

which we call a cocycle property with respect to the vector fR ∈ HR.
The statistical realization{

HR, |fR〉〈fR |, P (0,t]R (·), UR(t, 0)
}

(6.28)

is unitarily equivalent to the statistical realization (6.7) and at any moment t ∈ (0, T ] presents,
in general, the invariant class G(t) of unitarily and phase equivalent statistical realizations,
corresponding to the time-dependent QSR, specified in section 3.

We shall call the 4-tuple{
HR, |ϕR〉〈ϕR |, P (0,T ]

R (·), {UR(t, τ ), : 0 � τ < t � T }} (6.29)

represented by a simple projection-valued measure P (0,T ]
R (·): �T0 → B(HR) and a family of

unitary operators (6.19), with properties (6.21) and (6.22)–(6.27), respectively, the measuring
model of continuous-time direct quantum measurement, corresponding to a simple time-
dependent QSR.
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7. Scheme for continuous-time indirect nondemolition measurement

Building on [35], we now consider the scheme for continuous-time indirect measurement
presented in [7–10]. This type of measurement implies that indirect information about the
quantum system S is obtained via a direct measurement upon another quantum system, say
R (with a Hilbert space HR), entangled with S. The unitary evolution of the compound
system (S plus R) on the complex separable Hilbert space KR = H ⊗ HR is described in the
frame of the Hamiltonian approach, while the description of a direct measurement upon the
quantum system R from the point of view of QSA should be based on the introduction of a
corresponding QSR.

However, up to the present moment, the consideration in the physical and the mathematical
literature of continuous-time indirect observation on the system S has been given, in fact, only
for a special case, where the POV measure of the continuous-time direct measurement upon
the quantum system R is presented by the joint spectral measure of a family of self-adjoint,
time-dependent operators {QH(t): t ∈ (0, T ]} on KR , mutually commuting

[QH(t),QH (τ)] = 0 ∀t, τ ∈ (0, T ] (7.1)

and corresponding in the Heisenberg picture to some observable of the quantum system R.
A von Neumann observable QH(t), t ∈ (0, T ], satisfying the condition (7.1) is usually

termed nondemolition [29, 44, 35] or self-nondemolition (cf [7–10] and references therein).
However, as was pointed out in [7–10], the condition (7.1) alone does not ensure the

existence, at any moment of time t ∈ (0, T ], of an instrument (with respect to the quantum
system S) which describes, via (2.3), conditional expectations of any von Neumann S-system
observable Z under continuous-time indirect measurement and, consequently, allows the
introduction of the family of posterior states (cf (2.8)).

That is why, in [7–10], along with the condition (7.1) there was also introduced
an additional condition, specified below by (7.2). These two conditions are required to
represent continuous-time indirect nondemolition measurement and are announced in [7–10]
as ‘principles of continuous in time nondemolition observation’.

Let {U(t, τ ): t, τ ∈ [0, T ]} be the cocycle of unitary operators, describing the evolution
of the compound system (S plus R) in the interaction picture, induced by the free dynamics of
the system R (cf, for example, [35]). Then, according to the definition given in [7–10], under
continuous-time indirect nondemolition measurement:

• there must exist the nondemolition observable QH(t) = U∗(t, 0)(I ⊗ QR(t))U(t, 0),
corresponding to some free dynamical observableQR(t) of the system R;

• at any moment of time t ∈ [0, T ] any von Neumann S-system observable ZH(t) =
U∗(t, 0)(Z ⊗ I)U(t, 0), Z ∈ B(H), where Z = Z∗, must commute with the observables
QH(s) at all previous moments of time:

[ZH(t),QH (s)] = 0 ∀t � s � 0. (7.2)

Suppose, for simplicity, that for the family of self-adjoint, mutually commuting operators
{QH(t), t ∈ (0, T ]} its joint spectrum [12] coincides with �T0 = D(0, T ].

We are now in a position to prove the following statement:

Proposition. In the most general case, that is, without specifying a concrete nondemolition
measurement model, the simultaneous fulfilment of conditions (7.1) and (7.2) is equivalent to
the following:
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• the family of self-adjoint operators {QR(t): t ∈ (0, T ]} is a family of mutually commuting
operators such that their joint spectral projection-valued measure P (0,T ]

R (·): �T0 →
B(HR), for any T � t � τ > 0, satisfies the commutativity relation[

U(t, τ ), I ⊗ P (0,τ ]
R (·)

]
= 0 (7.3)

where P (0,t]R

(
Bt0

) = P (0,T ]
R

(
Bt0 ×�Tt

)
for ∀Bt0 ∈ Ft . (Note that

[U(t, τ ), I ⊗QR(s)] = 0 (7.4)

∀t � τ � s > 0, presents an equivalent formulation of the relation (7.3)).

Proof. Let (7.1) and (7.2) be satisfied. Then from the condition (7.1) it follows (cf [12]) that
there exists a joint projection-valued measure P (0,T ]

H (·): �T0 → B(H ⊗ HR) such that for any
t ∈ (0, T ]

QH(t) =
∫
�T0

xtP
(0,T ]
H

(
dxT0

) =
∫
�t0

xtP
(0,t]
H

(
dxt0

)
(7.5)

where the projection-valued measure P (0,t]H

(
Bt0

) = P (0,T ]
H

(
Bt0 ×�Tt

)
.

For any Z ∈ B(H), Z = Z∗, the commutativity relation (7.2) is then equivalent to[
ZH(t), P

(0,t]
H (·)] = 0 (7.6)

and, hence, to [
Z ⊗ I, U(t, 0)P (0,t]H (·)U∗(t, 0)

] = 0. (7.7)

Since (7.7) is valid for any von Neumann S-system observable Z ∈ B(H), by the
commutation theorem of von Neumann algebras the projection-valued measure
U(t, 0)P (0,t]H (·)U∗(t, 0) must have the form:

U(t, 0)P (0,t]H (·)U∗(t, 0) = I ⊗ P (0,t]R (·). (7.8)

From (7.8), it follows that the relations

P
(0,τ ]
H (·) = U∗(τ, 0)

(
I ⊗ P (0,τ ]

R (·))U(τ, 0)
= U∗(t, 0)

(
I ⊗ P (0,τ ]

R (·))U(t, 0) (7.9)

are valid for any t � τ > 0. The relation (7.3) follows from (7.9) trivially.
Furthermore, due to QH(t) = U∗(t, 0)(I ⊗ QR(t))U(t, 0) and the relations (7.8) and

(7.9), for any t > 0 we have the following representation:

QR(t) =
∫
�T0

xtP
(0,T ]
R

(
dxT0

) =
∫
�t0

xtP
(0,t]
R

(
dxt0

)
. (7.10)

Consequently, the von Neumann observableQR(t), t ∈ (0, T ] is also nondemolition.
The proof of the converse statement is straightforward. �
We would like to emphasize here that although the conditions (7.1) and (7.2) do not imply

any concrete measurement model, the consideration of continuous-time indirect nondemolition
measurement (cf [7–10] and references therein), leading to the derivation of the quantum
filtering equation, was presented only in the frame of quantum stochastic calculus. The
measurement model of quantum stochastic calculus is essentially Markovian. That is why, as
already pointed out in the introduction and section 5, under the scheme of continuous-time
indirect nondemolition measurement, the quantum filtering equation [7–10], as well as its
further analogues [4–6, 27, 29, 30], correspond to quite special stochastic models, which are
Markovian.
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8. The scheme for continuous-time indirect nondemolition measurement as a special
measuring model of continuous-time measurement

In this section we show that:

• For the general measuring model (6.29) of continuous-time direct quantum measurement,
there exists a uniquely determined family {QR(t), t ∈ (0, T ]} of mutually commuting
(and hence nondemolition) self-adjoint operators on H, defined on a common domainD.
For any 0 < τ � t � T the joint spectral measure of these operators satisfies the relation[

U(t, τ ), I ⊗ P (0,τ ]
R (·)](ψ ⊗ fR) = 0. (8.1)

Since the condition (7.3) is only sufficient for the relation (8.1) to be valid and since,
in contrast to the model of ‘continuous-time indirect nondemolition measurement’, the
unitary operatorsU(t, τ ), 0 � τ < t � T in (6.29) are strongly continuous in t only from
the right, the model of continuous-time ‘indirect nondemolition measurement’ represents
only a special case of the measuring model (6.29) of continuous-time observation of a
quantum system.

• For the most general (that is, not only in the frame of quantum stochastic calculus)
model of continuous-time nondemolition measurement with initial state of the system
R being pure, under some further technical (for simplicity) restrictions, specified below,
there exists the uniquely defined simple time-dependent QSR, introduced in section 2 and
satisfying properties (3.4)–(3.11).

Consider the first point: let P (0,T ]
R be the projection-valued measure of a measuring model

(6.29). Introduce the system of self-adjoint operators {QR(t): t ∈ (0, T ]} given by

QR(t) =
∫
�T0

xtP
(0,T ]
R

(
dxT0

) =
∫
�t0

xtP
(0,t]
R

(
dxt0

)
. (8.2)

These operators are mutually commuting (cf [12]) with a common domain

D =
{
f ∈ HR:

∫
�T0

(xt )
2νf

(
dxT0

)
<∞,∀t ∈ (0, T ]

}
(8.3)

where the probability scalar measure νf
(
dxT0

) = 〈
f, P

(0,T ]
R

(
dxT0

)
f

〉
on �T0 . The relation (8.1)

corresponds then to (6.21).
Let us now prove the second point: come back to the notation of section 7. Let fR be

the initial state of the quantum system R and let the conditions (7.1) and (7.2) be satisfied.
Suppose also, for simplicity, that the joint spectrum of the family of nondemolition observables
{QH(t): t ∈ (0, T ]} coincides with �T0 = D(0, T ].

Then, according to the consideration in section 7, {QR(t): t ∈ (0, T ]} must be a family
of self-adjoint mutually commuting observables with the joint projection-valued measure
P
(0,T ]
R (·): �T0 → B(HR), satisfying the relation (7.3).

The relation〈
fR,P

(0,T ]
R (·)fR

〉
= νT0 (·) (8.4)

determines the probability scalar measure νT0 (·) on the filtered space
(
�T0 , {Ft },F

)
. For

simplicity, suppose that P (0,T ]
R (·) is simple. The family of quantum stochastic evolution

operators V tτ (·): �t0 → B(H),∀t, τ ∈ (0, T ]}, is then introduced similarly to (6.11) (cf also
[36]) and has the properties (3.5)–(3.11).
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9. Concluding remarks

A full description and classification, in terms of invariants, of all possible integral
representations of any given quantum instrument were presented in [36] where the
interpretation of the derived mathematical results for the quantum measurement theory was
also proposed and discussed. In the present paper we consider the further development
of the general quantum stochastic approach, introduced in [36, 37], for the description,
in the most general case, of statistical and stochastic aspects under continuous-time
measurement.

Specifying, in general, the time-wise properties of a quantum stochastic evolution
operator, describing the stochastic evolution of an open quantum system subjected to
continuous-time observation, we introduce the notion of a conditional quantum instrument
and discuss the properties of the families of time-dependent quantum instruments that describe
a continuous-time measurement. We present also the time-wise specifications of compatibles
in time outcome laws and the formulae for the conditional and unconditional posterior
states.

Further, we define, in the most general case and without assuming any Markov property,
the notion of the posterior pure state trajectories in a Hilbert space and present their (compatible
in time) probabilistic description. The restrictions, under which the stochastic evolution of a
continuously observed quantum system is Markovian, are also specified.

We construct a ‘canonical’ measuring model of a continuous-time observation of an
open quantum system and prove that, formally, the scheme for continuous-time indirect
nondemolition measurement represents a special case of this model.
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[31] Hood C J, Lynn T W, Doherty A C, Parkins A S and Kimble H J 2000 The atom-cavity microscope. Single

atoms bound in orbit by single photons Science 287 1447
[32] Kraus K 1983 States, Effects and Operations: Fundamental Notions of Quantum Theory (Berlin: Springer)
[33] Lindblad G 1976 On the generators of quantum dynamical semigroups Commun. Math. Phys. 48 119
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